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ABSTRACT
Recently, there has been a pressing need tomanage high-dimensional
vector data in data science and AI applications. This trend is fueled
by the proliferation of unstructured data and machine learning
(ML), where ML models usually transform unstructured data into
feature vectors for data analytics, e.g., product recommendation.
Existing systems and algorithms for managing vector data have
two limitations: (1) They incur serious performance issue when
handling large-scale and dynamic vector data; and (2) They pro-
vide limited functionalities that cannot meet the requirements of
versatile applications.

This paper presents Milvus, a purpose-built data management
system to e�ciently manage large-scale vector data. Milvus sup-
ports easy-to-use application interfaces (including SDKs and REST-
ful APIs); optimizes for the heterogeneous computing platformwith
modern CPUs and GPUs; enables advanced query processing be-
yond simple vector similarity search; handles dynamic data for fast
updates while ensuring e�cient query processing; and distributes
data across multiple nodes to achieve scalability and availability.
We �rst describe the design and implementation of Milvus. Then
we demonstrate the real-world use cases supported by Milvus. In
particular, we build a series of 10 applications (e.g., image/video
search, chemical structure analysis, COVID-19 dataset search, per-
sonalized recommendation, biological multi-factor authentication,
intelligent question answering) on top of Milvus. Finally, we exper-
imentally evaluate Milvus with a wide range of systems including
two open source systems (Vearch and Microsoft SPTAG) and three
commercial systems. Experiments show that Milvus is up to two
orders of magnitude faster than the competitors while providing
more functionalities. Now Milvus is deployed by hundreds of orga-
nizations worldwide and it is also recognized as an incubation-stage
project of the LF AI & Data Foundation. Milvus is open-sourced at
https://github.com/milvus-io/milvus.
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1 INTRODUCTION
At Zilliz, we have experienced a growing need from various cus-
tomers to manage large-scale high-dimensional vector data (rang-
ing from 10s to 1000s of dimensions) in many data science and
AI applications. This is largely due to two trends. The �rst one is
an explosive growth of unstructured data such as images, videos,
texts, medical data, and housing data due to the prevalence of
smartphones, IoT devices, and social media apps. According to IDC,
80% of data will be unstructured by 2025 [36]. The second trend
is the rapid development of machine learning that can e�ectively
transform unstructured data into learned feature vectors for data
analytics. In particular, a recent popular approach in recommender
systems is called vector embedding that converts an item to a fea-
ture vector (such as item2vec [11], word2vec [52], doc2vec [37],
graph2vec [26]) and provides recommendations via �nding similar
vectors [13, 15, 25, 51]. For example, YouTube embeds videos to
vectors [15]; Airbnb models houses with vectors [25]; Bioscientists
describe the molecular structural information of drug compounds
using vectors [13, 51]. Besides that, images and texts are also natu-
rally represented by vectors [8, 53].

Those applications present unique requirements and challenges
for designing a scalable vector data management system. These
include: (1) The need to support not only fast query processing
on large-scale vector data but also the e�cient handling of dy-
namic vector data (such as insertions and deletions). As an example,
Youtube uploads 500 hours of user-generated videos per minute and
meanwhile o�ers real-time recommendations [67]. (2) The need to
provide advanced query processing such as attribute �ltering [65]
and multi-vector query processing [10] beyond simple vector simi-
larity search. Here attribute �ltering is to only search vectors that
satisfy a given �ltering condition, which is useful in e-commerce
applications [65], e.g., �nding the T-shirts similar to a given image
vector that also cost less than $100. And multi-vector query pro-
cessing targets for the scenario where each object is described by
multiple vectors, e.g., pro�ling a person using a face vector and a
posture vector in many computer vision applications [10, 56].
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Table 1: System comparison

Billion-Scale Data Dynamic Data GPU Attribute Filtering Multi-Vector Query Distributed System
Facebook Faiss [3, 35] 3 7 3 7 7 7
Microsoft SPTAG [14] 3 7 7 7 7 7
ElasticSearch [2] 7 3 7 3 7 3
Jingdong Vearch [4, 39] 7 3 3 3 7 3
Alibaba AnalyticDB-V [65] 3 3 7 3 7 3
Alibaba PASE (PostgreSQL) [68] 7 3 7 3 7 7
Milvus (this paper) 3 3 3 3 3 3

Existing works on vector data management mainly focus on vec-
tor similarity search [14, 20, 22, 33, 35, 39, 45, 46, 48, 49, 57, 65, 68],
but they cannot meet the above requirements due to poor per-
formance (on large-scale and dynamic vector data) and limited
functionalities (e.g., not being capable of supporting attribute �lter-
ing and multi-vector queries) to support versatile data science and
AI applications.

More speci�cally, we classify existing works into two categories:
algorithms and systems. For the algorithmic works on vector simi-
larity search, e.g., [20, 22, 33, 45, 46, 48, 49, 57], together with their
open-source implementation libraries (exempli�ed by Facebook
Faiss [35] and Microsoft SPTAG [14]), there are several limitations.
(1) They are algorithms and libraries, not a full-�edged system that
manages vector data. They cannot handle large amount of data
very well since they assume that all the data and index are stored in
main memory and cannot span multiple machines. (2) Those works
usually assume data to be static once ingested into the system and
cannot easily handle dynamic data while ensuring fast real-time
searches. (3) They do not support advanced query processing. (4)
Those works are not optimized for the heterogeneous computing
architecture with CPUs and GPUs.

For the system works on vector similarity search, e.g., Alibaba
AnalyticDB-V [65] and Alibaba PASE (PostgreSQL) [68], they fol-
low the one-size-�ts-all approach to extend relational databases for
supporting vector data by adding a table column called “vector col-
umn” to store vectors. However, those systems are not specialized
for managing vector data and they do not treat vectors as �rst-class
citizens. (1) Legacy database components such as optimizer and
storage engine prevent �ne-tuned optimizations for vectors, e.g.,
the query optimizer misses signi�cant opportunity to best leverage
CPU and GPU for processing vector data. (2) They do not support
advanced query processing such as multi-vector queries.

Another relevant system is Vearch [4, 39], which is designed
for vector search. But Vearch is not e�cient on large-scale data.
Experiments (Figure 8 and Figure 15) show that Milvus, the system
introduced in this paper, is 6.4⇥ ⇠ 47.0⇥ faster than Vearch. Also,
Vearch does not support multi-vector query processing.

This paper presents Milvus, a purpose-built data management
system to e�ciently store and search large-scale vector data for
data science and AI applications. It is a specialized system for
high-dimensional vectors following the design practice of one-size-
not-�ts-all [60] in contrast to generalizing relational databases to
support vectors. Milvus provides many application interfaces (in-
cluding SDKs in Python/Java/Go/C++ and RESTful APIs) that can
be easily used by applications. Milvus is highly tuned for the het-
erogeneous computing architecture with modern CPUs and GPUs
(multiple GPU devices) for the best e�ciency. It supports versatile
query types such as vector similarity search with various similarity

functions, attribute �ltering, and multi-vector query processing.
It provides di�erent types of indexes (e.g., quantization-based in-
dexes [33, 35] and graph-based indexes [20, 49]) and develops an ex-
tensible interface to easily incorporate new indexes into the system.
Milvus manages dynamic vector data (e.g., insertions and deletions)
via an LSM-based structure while providing consistent real-time
searches with snapshot isolation. Milvus is also a distributed data
management system deployed across multiple nodes to achieve
scalability and availability. Table 1 highlights the main di�erences
between Milvus and other systems.

In terms of implementation, Milvus is built on top of Facebook
Faiss [3, 35], an open-source C++ library for vector similarity search.
But Milvus signi�cantly enhances Faiss with improved performance
(e.g., optimizing for the heterogeneous computing platform in Sec. 3,
supporting dynamic data management e�ciently in Sec. 2.3 and
distributed query processing in Sec. 5.3), enhanced functionalities
(e.g., attribute �ltering and multi-vector query processing in Sec. 4),
and better usability (e.g., application interfaces in Sec. 2.1) to be a
full-�edged easy-to-use vector data management system.

Product impact. Milvus is adopted by hundreds of organiza-
tions and institutions worldwide in various �elds such as image
processing, computer vision, natural language processing, voice
recognition, recommender systems, and drug discovery. More im-
portantly, Milvus was accepted as an incubation-stage project of
the LF AI & Data Foundation in January 2020.1

Contributions. This paper makes the following contributions:
• System design and implementation (Sec. 2 and Sec. 5):
The overall contribution is the design and implementation
of Milvus, a purpose-built vector data management system
for managing large-scale and dynamic vector data to enable
data science and AI applications. Milvus is open-sourced at
https://github.com/milvus-io/milvus.

• Heterogeneous computing (Sec. 3): We optimize Milvus
for the heterogeneous hardware platformwith modern CPUs
and GPUs for fast query processing. For CPU-oriented de-
sign, we propose both cache-aware and SIMD-aware (e.g.,
SSE, AVX, AVX2, AVX512) optimizations. For GPU-oriented
design, we design a new hybrid index that takes advantages
of the best of CPU and GPU, and we also develop a new
scheduling strategy to support multiple GPU devices.

• Advanced query processing (Sec. 4): We support attribute
�ltering and multi-vector query processing beyond simple
vector similarity search in Milvus. In particular, we design
a new partition-based algorithm for attribute �ltering and
two algorithms (vector fusion and iterative merging) for
multi-vector query processing.

1https://lfaidata.foundation/projects/milvus



Milvus: A Purpose-Built Vector Data Management System SIGMOD ’21, June 20–25, 2021, Virtual Event, China

• Novel applications (Sec. 6): We describe novel applications
powered by Milvus. In particular, we build a series of 10 ap-
plications2 on top of Milvus to demonstrate its broad appli-
cability including image search, video search, chemical struc-
ture analysis, COVID-19 dataset search, personalized recom-
mendation, biological multi-factor authentication, intelligent
question answering, image-text retrieval, cross-modal pedes-
trian search, and recipe-food search.

2 SYSTEM DESIGN
In this section, we present an overview of Milvus. Figure 1 shows
the architecture of Milvus with three major components: query
engine, GPU engine, and storage engine. The query engine sup-
ports e�cient query processing over vector data and it is optimized
for modern CPUs by reducing cache misses and leveraging SIMD
instructions. The GPU engine is a co-processing engine that accel-
erates performance with vast parallelism. It also supports multiple
GPU devices for e�ciency. The storage engine enables data dura-
bility and incorporates an LSM-based structure for dynamic data
management. It runs on various �le systems (including local �le
systems, Amazon S3, and HDFS) with a bu�erpool in memory.

2.1 Query Processing
We �rst present the concept of entity used in Milvus and then
explain query types, similarity functions, and application interfaces.

Entity. To best capture versatile data science and AI applica-
tions, Milvus supports query processing over both vector data and
non-vector data. We de�ne the term entity as follows to incorporate
the two. Each entity in Milvus is described as one or more vectors
and optionally some numerical attributes (non-vector data). For
example, in the image search application, the numerical attributes
can represent the age and height of a person in addition to possibly
multiple machine-learned feature vectors of his/her photos (e.g., de-
scribing front-face, side-face, or posture [10]). In the current version
of Milvus, we only support numerical attributes as observed from
many applications. But in the future, we plan to support categorical
attributes with indexes like inverted lists or bitmaps [64].

Query types.Milvus supports three primitive query types:
• Vector query: This query type is the traditional vector simi-
larity search [33, 41, 48, 49], where each entity is described
as a single vector. The system returns : most similar vectors
where : is a user-input parameter.

• Attribute �ltering: Each entity is speci�ed by a single vector
and some attributes [65]. The system returns : most similar
vectors while adhering to the attributes constraints. As an
example in recommender systems, users want to �nd similar
clothes to a given query image while the price is below $100.

• Multi-vector query: Each entity is stored as multiple vec-
tors [10]. The query returns top-: similar entities according
to an aggregation function (e.g., weighted sum) between
multiple vectors.

Similarity functions. Milvus o�ers commonly used similarity
metrics, including Euclidean distance, inner product, cosine similar-
ity, Hamming distance, and Jaccard distance, allowing applications
to explore vector similarity in the most e�ective approach.

2https://github.com/milvus-io/bootcamp/tree/master/EN_solutions
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Figure 1: System architecture of Milvus

Application interfaces.Milvus provides easy-to-use SDK (soft-
ware development kit) interfaces that can be directly called in ap-
plications written in various languages including Python, Java, Go,
and C++. Milvus also supports RESTful APIs for web applications.

2.2 Indexing
Indexing is of tremendous importance to query processing inMilvus.
But a challenging issue we face is to decide which indexes to support
in Milvus, because there are numerous indexes developed for vector
similarity search. The latest benchmark [41] shows that there is
no winner in all scenarios and each index comes with tradeo�s in
performance, accuracy, and space overhead.

InMilvus, wemainly support two types of indexes:3 quantization-
based indexes (including IVF_FLAT [3, 33, 35], IVF_SQ8 [3, 35],
and IVF_PQ [3, 22, 33, 35]) and graph-based indexes (including
HNSW [49] and RNSG [20]) to serve di�erent applications. The
design decision is based on factors including the latest literature
review [41], industrial-strength systems (e.g., Alibaba PASE [68],
Alibaba AnalyticDB-V [65], Jingdong Vearch [39]), open-source li-
braries (e.g., Facebook Faiss [3, 35]), and inputs from customers. We
exclude LSH-based approaches because they have lower accuracy
than quantization-based approaches on billion-scale data [65, 68].

Considering there are many new indexes coming out every year,
Milvus is designed to easily incorporate the new indexes with a
high-level abstraction. Developers only need to implement a few
pre-de�ned interfaces for adding a new index. Our hope is that
Milvus can eventually become a standard platform for vector data
management with versatile indexes.

2.3 Dynamic Data Management
Milvus supports e�cient insertions and deletions by adopting the
idea of LSM-tree [47]. Newly inserted entities are stored in memory
�rst as MemTable. Once the accumulated size reaches a threshold,
or once every second, the MemTable becomes immutable and then
gets �ushed to disk as a new segment. Smaller segments are merged
into larger ones for fast sequential access. Milvus implements a
tiered merge policy (also used in Apache Lucene) that aims to
merge segments of approximately equal sizes until a con�gurable
size limit (e.g., 1GB) is reached. Deletions are supported in the
same out-of-place approach except that the obsoleted vectors are
3Milvus also supports tree-based indexes, e.g., ANNOY [1].
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removed during segment merge. Updates are supported by deletions
and insertions. By default, Milvus builds indexes only for large
segments (e.g., > 1GB) but users are allowed to manually build
indexes for segments of any size if necessary. Both index and data
are stored in the same segment. Thus, the segment is the basic unit
of searching, scheduling, and bu�ering.

Milvus o�ers snapshot isolation to make sure reads and writes
share a consistent view and do not interfere with each other. We
present the details of snapshot isolation in Sec. 5.2.

2.4 Storage Management
As mentioned in Sec. 2.1, each entity is expressed as one or more
vectors and optionally some attributes. Thus, each entity can be
regarded as a row in an entity table. To facilitate query processing,
Milvus physically stores the entity table in a columnar fashion.

Vector storage. For single-vector entities, Milvus stores all the
vectors continuously without explicitly storing the row IDs. In this
way, all the vectors are sorted by row IDs. Given a row ID, Milvus
can directly access the corresponding vector since each vector is of
the same length. For multi-vector entities, Milvus stores the vectors
of di�erent entities in a columnar fashion. For example, assuming
that there are three entities (�, ⌫, and ⇠) in the database and each
entity has two vectors v1 and v2, then all the v1 of di�erent entities
are stored together and all the v2 are stored together. That is, the
storage format is {�.v1, ⌫.v1, ⇠ .v1, �.v2, ⌫.v2, ⇠ .v2}.

Attribute storage. The attributes are stored column by col-
umn. In particular, each attribute column is stored as an array of
hkey ,valuei pairs where the key is the attribute value and value is
the row ID, sorted by the key . Besides that, we build skip pointers
(i.e., min/max values) following Snow�ake [16] as indexing for the
data pages on disk. This allows e�cient point query and range
query in that column, e.g., price is less than $100.

Bu�erpool.Milvus assumes that most (if not all) data and index
are resident in memory for high performance. If not, it relies on
an LRU-based bu�er manager. In particular, the caching unit is a
segment, which is the basic searching unit as explained in Sec. 2.3.

Multi-storage. For �exibility and reliability, Milvus supports
multiple �le systems including local �le systems, Amazon S3, and
HDFS for the underlying data storage. This also facilitates the de-
ployment of Milvus in the cloud.

2.5 Heterogeneous Computing
Milvus is highly optimized for the heterogeneous computing plat-
form that includes CPUs and GPUs. Sec. 3 presents the details.

2.6 Distributed System
Milvus can function as a distributed system deployed across multi-
ple nodes. It adopts modern design practices in distributed systems
and cloud systems such as storage/compute separation, shared stor-
age, read/write separation, and single-writer-multi-reader. Sec. 5.3
explains more.

3 HETEROGENEOUS COMPUTING
In this section, we present the optimizations for Milvus to best
leverage the heterogeneous computing platform involving both
CPUs and GPUs to achieve high performance.

q

v0
v1

v2
v3

c0

v4

v5 v6

v7

v8
v9

c1

c2

Figure 2: An example of quantization

As explained in Sec. 2.2, Milvus mainly supports quantization-
based indexes (including IVF_FLAT [3, 33, 35], IVF_SQ8 [3, 35],
and IVF_PQ [3, 22, 33, 35]) and graph-based indexes (including
HNSW [49] and RNSG [20]). In this section, we use quantization-
based indexes to illustrate our optimizations because they consume
much less memory and are much faster to build index while achiev-
ing decent query performance when compared to graph-based
indexes [65, 68]. Note that many optimizations (such as SIMD and
GPU optimizations) can be applied to graph-based indexes.

3.1 Background
Before diving into optimizations, we explain vector quantization
and quantization-based indexes. The main idea of vector quantiza-
tion is to apply a quantizer I to map a vector v to a codeword I (v)
chosen from a codebook C [33]. The K-means clustering algorithm
is commonly used to construct the codebook C where each code-
word is the centroid and I (v) is the closest centroid to v. Figure 2
shows an example of 10 vectors (v0 to v9) of three clusters with
centroids being c0 to c2, then I (v0), I (v1), I (v2), or I (v3) is c0.

Quantization-based indexes (such as IVF_FLAT [3, 33, 35], IVF_SQ8
[3, 35], and IVF_PQ [3, 22, 33, 35]) use two quantizers: coarse quan-
tizer and �ne quantizer. The coarse quantizer applies the  -means
algorithm (e.g.,  is 16384 in Milvus and Faiss [3]) to cluster vec-
tors into  buckets. And the �ne quantizer encodes the vectors
within each bucket. Di�erent indexes may use di�erent �ne quan-
tizers. IVF_FLAT uses the original vector representation; IVF_SQ8
uses a compressed representation for the vectors by adopting one-
dimensional quantizer (called “scalar quantizer”) to compress a
4-byte �oat value to a 1-byte integer; and IVF_PQ uses product
quantization that splits each vector into multiple sub-vectors and
applies  -means for each sub-space.

Query processing (of a query q) over quantization-based indexes
takes two steps: (1) Find the closest =?A>14 buckets (or clusters)
based on the distance between q and the centroid of each bucket.
For example, assuming =?A>14 is 2 in Figure 2, then the closest
two buckets of q are centered at c0 and c1. The parameter =?A>14
controls the tradeo� between accuracy and performance. Higher
=?A>14 produces better accuracy but worse performance. (2) Search
within each of the =?A>14 relevant buckets based on di�erent �ne
quantizers. For example, if the index in Figure 2 is IVF_FLAT, then
it needs to scan the vectors v0 to v6 in the two buckets.

3.2 CPU-oriented Optimizations
3.2.1 Cache-aware Optimizations in Milvus

The fundamental problem for query processing over quantization-
based indexes is that, given a collection of< queries {q1, q2, ..., q<}
and a collection of = data vectors {v1, v2, ..., v=}, how to quickly
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�nd for each query q8 its top-: similar vectors? In practice, users
can submit batch queries so that< � 1.

This operation happens in �nding the relevant buckets as well as
searching within each relevant bucket. The original implementation
in Facebook Faiss [3], which Milvus is built on top of, is ine�cient
because it incurs many CPU cache misses as explained below. Thus,
Milvus develops an optimized approach to signi�cantly reduce data
movement between main memory and CPU caches.

Original implementation in Facebook Faiss [3]. Faiss uses
the OpenMP multi-threading to process queries in parallel. Each
thread is assigned to work on a single query at a time. The thread
is released (for next query) once the current task is �nished. Each
task compares q8 with all the = data vectors and maintains a :-sized
heap to store the results.

The above solution in Faiss has two performance issues: (1) It
incurs many CPU cache misses, because for each query the entire
data needs to be streamed through CPU caches and cannot be
reused for the next query. Thus, each thread accesses</C times of
the entire data where C is the total number of threads. (2) It cannot
fully leverage multi-core parallelism when the batch size< is small.

Optimizations in Milvus. Milvus develops two ideas to tackle
the issues. First, it reuses the accessed data vectors as much as possi-
ble for multiple queries to minimize CPU cache misses. Speci�cally,
it optimizes for reducing L3 cache misses because the penalty to
access memory is high and also L3 cache size (typically 10s MB)
is much bigger than L1/L2 cache, leaving more room for optimiza-
tions. Second, it uses �ne-grained parallelism that assigns threads
to data vectors instead of query vectors to best leverage multi-core
parallelism, because the data size = is usually much bigger than the
query size< in practice.

Figure 3 shows the overall design. Speci�cally, let C be the num-
ber of threads, then each thread )8 is assigned 1 = =/C data vec-
tors:4 {v(8�1)⇤1 , v(8�1)⇤1+1, ..., v8⇤1�1}. Milvus then partitions the
< queries into query blocks of size B such that each query block
(together with its associated heaps) can always �t in the L3 CPU
cache. We decide B later on in Equation (1). Here we assume that<
is divisible by B . Milvus computes the top-: results of each query
block at a time with multiple threads. Whenever each thread loads
its assigned data vectors to L3 cache, they will be compared against
the entire query block (with B queries) in the cache. To minimize
the synchronization overhead, Milvus assigns a heap per query
per thread. In particular, assuming the 8-th query block {q(8�1)⇤B ,
q(8�1)⇤B+1, ...,q8⇤B�1} is in cache,Milvus dedicates the heap�A�1, 9�1
for the 9-th query q(8�1)⇤B+9�1 on the A -th thread )A�1. Thus, the
results of a query q8 are spread over C threads of heaps. Thus, it
needs to merge the heaps of each thread to obtain the �nal top-:
results.

Next, we discuss how to determine the query block size B such
that B queries and their associated heaps can always �t in L3 cache.
Let 3 be the dimensionality, then the size of each query is 3 ⇥
sizeof(�oat). Since each heap entry contains a pair of vector ID and
similarity, then the total size of the heaps (per query) is C ⇥ : ⇥
(sizeof(int64) + sizeof(�oat)) where C is the number of threads. Thus,
B is computed as follows:

B =
L3’s cache size

3 ⇥ sizeof(�oat) + C ⇥ : ⇥ (sizeof(int64) + sizeof(�oat)) . (1)

4We assume that = is divisible by C .
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Figure 3: Cache-aware design in Milvus

In this way, each thread only accesses</(B⇤C) times of the entire
data, which is B times smaller than the original implementation in
Facebook Faiss [3]. Experiments (Sec. 7.4) show that this improves
performance by a factor of 1.5⇥ to 2.7⇥.

3.2.2 SIMD-aware Optimizations in Milvus
Modern CPUs support increasingly wider SIMD instructions.

Thus, it is not surprising that Facebook Faiss [3] implements SIMD-
aware algorithms to accelerate vector similarity search. We make
two engineering optimizations in Milvus: (1) Supporting AVX512;
and (2) Automatic SIMD-instruction selection.

Supporting AVX512. Faiss [3] does not support AVX512, which
is now available inmainstreamCPUs. Thus, we extend the similarity
computing functionwithAVX512 instructions, such as _mm512_add_ps,
_mm512_mul_ps, and _mm512_extractf32x8_ps. Now Milvus sup-
ports SIMD SSE, AVX, AVX2, and AVX512.

Automatic SIMD-instruction selection. Milvus is designed
to work well on a wide spectrum of CPU processors (both on-
premises and cloud platforms) with di�erent SIMD instructions
(e.g., SIMD SSE, AVX, AVX2, and AVX512). Thus the challenge is,
given a single piece of software binary (i.e., Milvus), how to make
it automatically invoke the suitable SIMD instructions on any CPU
processor? Faiss [3] does not support it and users need to manually
specify the SIMD �ag (e.g., “-msse4”) during compilation time. In
Milvus, we take a considerable amount of engineering e�ort to
refactor the codebase of Faiss. We factor out the common functions
(e.g., similarity computing) that rely on SIMD accelerations. Then
for each function, we implement four versions (i.e., SSE, AVX, AVX2,
AVX512) and put each one into a separated source �le, which is
further compiled individually with the corresponding SIMD �ag.
During runtime, Milvus can automatically choose the suitable SIMD
instructions based on the current CPU �ags and then link the right
function pointers using hooking.

3.3 GPU-oriented Optimizations
GPU is known for vast parallelism and Faiss [3] supports GPU for
query processing over vector data. Milvus enhances Faiss in two
aspects: (1) Supporting bigger : in the GPU kernel; (2) Supporting
multi-GPU devices.

Supporting bigger : in GPU kernel. The original implemen-
tation in Faiss [3] does not support top-: query processing where
: is greater than 1024 due to the limit of shared memory. But many
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application such as video surveillance and recommender systems
may need bigger : for further veri�cation or re-ranking [69, 71].

Milvus overcomes this limitation and supports : up to 16384
although technically Milvus can support any : .5 When : is larger
than 1024, Milvus executes the query in multiple rounds to cumu-
latively produce the �nal results. In the �rst round, Milvus behaves
the same as Faiss and gets the top 1024 results. For the second
and later rounds, Milvus �rst checks the distance of the last re-
sult (denoted as 3; ) in the previous round. Apparently, 3; is so far
the largest distance in the partial results. To handle vectors with
equivalent distance to the query, Milvus also records vector IDs in
the result whose distances are equal to 3; . Then Milvus �lters out
vectors whose distances are smaller than 3; or IDs are recorded.
From the remaining data, Milvus gets the next 1024 results. By
doing so, Milvus ensures that results in previous rounds will not
appear in the current round. After that, the new results are merged
with the partial results obtained in earlier rounds. Milvus processes
the query in a round-by-round fashion until a su�cient number of
results are collected.

Supporting multi-GPU devices. Faiss [3] supports multiple
GPU devices since they are usually found in modern servers. But
Faiss needs to declare all the GPU devices in advance during com-
pilation time. That means if the Faiss codebase is compiled using a
server with 2 GPUs, then the software binary can only be running
in a server that has at least 2 GPUs.

Milvus overcomes this limitation by allowing users to select any
number of GPU devices during runtime (instead of compilation
time). As a result, once the Milvus codebase is compiled into a
software binary, it can run at any server. Under the hood, Milvus
introduces a segment-based scheduling that assigns segment-based
search tasks to the available GPU devices. Each segment can only
be served by a single GPU device. This is particularly a good �t for
the cloud environment with dynamic resource management where
GPU devices can be elastically added or removed. For example,
if there is a new GPU device installed, Milvus can immediately
discover it and assign the next available search task to it.

3.4 GPU and CPU Co-design
In this mode, the GPU memory is not large enough to store the
entire data. Facebook Faiss [3] alleviates the problem by using a
low-footprint compressed index (called IVF_SQ8 [3])6 and mov-
ing data from CPU memory to GPU memory (via PCIe bus) on
demand. However, we �nd that there are two limitations: (1) The
PCIe bandwidth is not fully utilized, e.g., our experiments show
that the measured I/O bandwidth is only 1⇠2GB/s while PCIe 3.0
(16x) supports up to 15.75GB/s. (2) It is not always bene�cial to
execute queries on GPU (than CPU) considering the data transfer.

Milvus develops a new index called SQ8H (where ‘H’ stands for
hybrid) to address the above limitations (Algorithm 1).

Addressing the �rst limitation. We investigate the codebase
of Faiss and �gure out that Faiss copies data (from CPU to GPU)
bucket by bucket, which underutilizes the PCIe bandwidth since
each bucket can be small. So the natural idea is to copy multiple

5In Milvus, we purposely limit : to 16384 to prevent large data movement over net-
works. Also, that number is su�cient for the applications we have seen so far.
6Note that IVF_SQ8 takes 1/4 the space of IVF_FLAT while losing only 1% recall.
But the design principle and optimizations in Sec. 3.4 can be applicable to other
quantization-based indexes such as IVF_FLAT and IVF_PQ.

Algorithm 1: SQ8H
1 let =@ be the batch size;
2 if =@ � C⌘A4B⌘>;3 then
3 run all the queries entirely in GPU (load multiple buckets

to GPU memory on the �y);
4 else
5 execute the step 1 of SQ8 in GPU: �nding =?A>14 buckets;
6 execute the step 2 of SQ8 in CPU: scanning every relevant

bucket;

buckets simultaneously. But the downside of such multi-bucket-
copying is the handling of deletions where Faiss uses a simple in-
place update approach because each bucket is copied (and stored)
individually. Fortunately, deletions (and updates) are easily handled
in Milvus since Milvus adopts an e�cient LSM-based out-of-place
approach (Sec. 2.3). As a result, Milvus improves the I/O utilization
by copying multiple buckets if possible (line 3 of Algorithm 1).

Addressing the second limitation.We observe that GPU out-
performs CPU only if the query batch size is large enough consid-
ering the expensive data movement. That is because more queries
make the workload more computation-intensive since they search
the same data. Thus, if the batch size is bigger than a threshold
(e.g., 1000), Milvus executes all the queries in GPU and loads neces-
sary buckets if GPU memory is insu�cient (line 2 of Algorithm 1).
Otherwise, Milvus executes the query in a hybrid manner as fol-
lows. As mentioned in Sec. 3.1, there are two steps for searching
quantization-based indexes: �nding =?A>14 relevant (closest) buck-
ets and scanning each relevant bucket. Milvus executes step 1 in
GPU and step 2 in CPU because we observe that step 1 has a much
higher computation-to-I/O ratio than step 2 (line 5 and 6 in Algo-
rithm 1). That is because in step 1, all the queries compare against
the same  centroids to �nd =?A>14 nearest buckets, and also the  
centroids are small enough to be resident in the GPU memory. By
contrast, data accesses in step 2 are more scattered since di�erent
queries do not necessarily access the same buckets.

4 ADVANCED QUERY PROCESSING
4.1 Attribute Filtering
As mentioned in Sec. 2.1, attribute �ltering is a hybrid query type
that involves both vector data and non-vector data [65]. It only
searches vectors that satisfy the attributes constraints. It is crucial
to many applications [65], e.g., �nding similar houses (vector data)
whose sizes are within a speci�c range (non-vector data). For pre-
sentation purpose, we assume that each entity is associated with
a single vector and a single attribute since it is straightforward to
extend the algorithms to multiple attributes. We defer multi-vector
query processing to Sec. 4.2.

Formally, each such query involves two conditions C� and C+
where C� speci�es the attribute constraint and C+ is the normal
vector query constraint that returns top-: similar vectors. Without
loss of generality, C� is represented in the form of 0 >= ?1 &&
0 <= ?2 where 0 is the attribute (e.g., size, price) and ?1 and ?2 are
two boundaries of a range condition (e.g., ?1 = 100 and ?2 = 500).

There are several approaches to solve attribute �ltering as re-
cently studied in AnalyticDB-V [65]. In Milvus, we implement those
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Figure 4: Di�erent strategies for attribute �ltering

approaches (i.e., strategies A, B, C, D as explained below). We then
propose a partition-based approach (i.e., strategy E), which is up
to 13.7⇥ faster than the strategy D (i.e., state-of-the-art solution)
according to the experiments in Sec. 7.5. Figure 4 shows a summary
and we present the details next.

Strategy A: attribute-�rst-vector-full-scan. It only uses the
attribute constraint C� to obtain relevant entities via index search.
Since the data is stored mostly in memory, we use binary search,
but a B-tree index is also possible. When data cannot �t in memory,
we use skip pointers for fast search. After that, all the entities
in the result set are fully scanned to compare against the query
vector to produce the �nal top-: results. Although simple, this
approach is suitable when C� is highly selective such that only a
small number of candidates are required for further veri�cation.
Another interesting property of this strategy is that it produces the
exact results.

StrategyB: attribute-�rst-vector-search.The di�erencewith
the strategy A is that after it obtains the relevant entities according
to attribute constraint C� , it produces a bitmap of the resultant en-
tity IDs. Then it conducts the normal vector query processing based
on C+ and checks the bitmap whenever a vector is encountered.
Only vectors that pass bitmap testing are included in the �nal top-:
results. This strategy is suitable in many cases when C� or C+ is
moderately selective.

Strategy C: vector-�rst-attribute-full-scan. In contrast to
the strategy A, this approach only uses the vector constraint C+
to obtain the relevant entities via vector indexing like IVF_FLAT.
Then the resultant entities are fully scanned to verify if they satisfy
the attribute constraint C� . To make sure there are : �nal results, it
searches for \ ·: (\ > 1) results during the vector query processing.
This strategy is suitable when the vector constraint C+ is highly
selective that the number of candidates is relatively small.

Strategy D: cost-based. It is a cost-based approach that esti-
mates the cost of the strategy A, B, C, and picks up the one with
the least cost as proposed in AnalyticDB-V [65]. From [65] and our
experiments, the cost-based strategy is suitable in almost all cases.

Strategy E: partition-based. This is a partition-based approach
that we develop in Milvus. The main idea is that it partitions the
dataset based on the frequently searched attribute and applies the
cost-based approach (i.e., the strategy D) for each partition. In
particular, we maintain the frequency of each searched attribute in

a hash table and increase the counter whenever a query refers to
that attribute. Given a query of attribute �ltering, it only searches
the partitions whose attribute-ranges overlap with the query range.
More importantly, if the range of a speci�c partition is covered
by the query range, then this strategy does not need to check the
attribute constraint (C�) anymore and only focuses on vector query
processing (C+ ) in that partition, because all the vectors in that
partition satisfy the attribute constraint.

As an example, suppose that there are many queries involving
the attribute ‘price’ and the strategy E splits the dataset into �ve
partitions: P0[1⇠100], P1[101⇠200], P2[201⇠300], P3[301⇠400],
P4[401⇠500]. Then if the attribute constraint (C�) of the query is
[50⇠250], then only P0, P1, and P2 are necessary for searching
because their ranges overlap with the query range. And when
searching P1, there is no need to check the attribute constraint
since its range is completely covered by the query range. This can
signi�cantly improve the query performance.

In the current version of Milvus, we create the partitions o�ine
based on historical data and serve query processing online. The
number of partitions (denoted as d) is a parameter con�gured by
users. Choosing a proper d is subtle: If d is too small, then each
partition contains too many vectors and it becomes hard to prune
irrelevant partitions for this strategy; If d is too big, then the number
of vectors in each partition is so small that the vector indexing
deteriorates towards linear search. Based on our experience, we
recommend d to be chosen such that each partition contains roughly
1 million vectors. For example, on a billion-scale dataset, there are
around 1000 partitions. However, it is an interesting future work to
investigate the use of machine learning and statistics to dynamically
partition the data and decide the right number of partitions.

4.2 Multi-vector Queries
In many applications, each entity is speci�ed by multiple vectors for
accuracy. For example, intelligent video surveillance applications
use di�erent vectors to describe the front face, side face, and posture
for each person captured on camera [10]. Recipe search applications
use multiple vectors to represent text description and associated
images for each recipe [56]. Another source of multi-vector is that
many applications use more than one machine learning model even
for the same object to best describe that object [30, 69].

Formally, each entity contains ` vectors v0, v1, ..., v`�1. Then a
multi-vector query �nds top-: entities according to an aggregated
scoring function6 over the similarity function 5 (e.g., inner product)
of each individual vector v8 . Speci�cally, the similarity of two enti-
ties- and. is computed as6(5 (- .v0,. .v0), ..., 5 (- .v`�1,. .v`�1))
where - .v8 means the vector v8 of the entity - . To capture a wide
range of applications, we assume the aggregation function 6 to be
monotonic in the sense that 6 is non-decreasing with respect to
every 5 (- .v8 ,. .v8 ) [19]. In practice, many commonly used aggrega-
tion functions are monotonic, e.g., weighted sum, average/median,
and min/max.

Naive solution. LetD be the dataset andD8 is a collection of v8
of all the entities, i.e.,D8 = {4 .v8 |4 2 D}. Given a query @, the naive
solution is to issue an individual top-: query for each vector @.v8
on D8 to produce a set of candidates, which are further computed
to obtain the �nal top-: results. Although simple, it can miss many
true results leading to extremely low recall (e.g., 0.1). This approach
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was widely used in the area of AI and machine learning to support
e�ective recommendations, e.g., [29, 70].

In Milvus, we develop two new approaches, namely vector fusion
and interactive merging that target for di�erent scenarios.

Vector fusion. We illustrate the vector fusion approach assum-
ing that the similarity function is inner product and we will explain
how to extend to other similarity functions afterwards. Let 4 be an
arbitrary entity in the dataset and v0, v1, ..., v`�1 be the ` vectors
that each entity contains, this approach stores for each entity 4 its
` vectors as a concatenated vector v = [4 .v0, 4 .v1, ..., 4 .v`�1]. Let @
be a query entity, during query processing, this approach applies
the aggregation function 6 to the ` vectors of @, producing an ag-
gregated query vector. For example, if the aggregation function is
weighted sum withF8 for each weight, then the aggregated query
vector is: [F0 ⇥@.v0,F1 ⇥@.v1, ...,F`�1 ⇥@.v`�1]. Then it searches
the aggregated query vector against the concatenated vectors in
the dataset to obtain the �nal results. It is straightforward to prove
the correctness of vector fusion because the similarity function of
inner product is decomposable.

The vector fusion approach is simple and e�cient because it only
needs to invoke the vector query processing once. But it requires
a decomposable similarity function such as inner product. This
sounds restrictive but when the underlying data is normalized,
many similarity functions such as cosine similarity and Euclidean
distance can be converted to inner product equivalently.

Iterative merging. If the underlying data is not normalized
and the similarity function is not decomposable (e.g., Euclidean
distance), then the above vector fusion approach is not applica-
ble. Then we develop another algorithm called iterative merging
(see Algorithm 2) that is built on top of Fagin’s well-known NRA
algorithm [19], a general technique for top-: query processing.7

Our initial try is actually to use the NRA algorithm [19] by
treating the results of each @.v8 on D8 as a stream provided by
Milvus. However, we quickly �nd that it is ine�cient because NRA
frequently calls getNext() to obtain the next result of @.v8 in-
teractively. However, existing vector indexing techniques such as
quantization-based indexes and graph-based indexes do not support
getNext() e�ciently. A full search is required to get the next result.
Another drawback of NRA is that, it incurs signi�cant overhead to
maintain the heap since every access in NRA needs to update the
scores of the current objects in the heap.

Thus, iterative merging makes two optimizations over NRA: (1)
It does not rely on getNext() and instead calls Vector�ery(@.v8 ,
D8 , : 0) with adaptive : 0 to get the top-: 0 query results of @.v8 . As
a result, it does not need to invoke the vector query processing
for every access as NRA does. It can also eliminate the expensive
overhead of the heap maintenance as in NRA. (2) It introduces an
upper bound of the maximum number of steps to access since the
query results in Milvus are approximate.

Algorithm 2 shows iterative merging. The main idea is that it
iteratively issues a top-: 0 query processing for each @.v8 on D8
and puts the results to R8 , where D8 is a collection of v8 of all the
entities in the dataset D, i.e., D8 = {4 .v8 |4 2 D}, see line 3 and 4
in Algorithm 2. Then it executes the NRA algorithm over all the R8 .
If at least : results can be fully determined (line 5), i.e., NRA can
safely stop, then the algorithm can terminate since top-: results

7Note that the TA algorithm in [19] cannot be applied in this setting because TA
requires random access that is not available here.

Algorithm 2: Iterative merging
1 : 0  : ;
2 while : 0 < C⌘A4B⌘>;3 do

// run top-: 0 processing for each @.v8 on D8

3 foreach 8 do
4 R8  Vector�ery(@.v8 , D8 , : 0);
5 if : results are fully determined with NRA [19] on all R8

then
6 return top-: results;
7 else
8 : 0  : 0 ⇥ 2;

9 return top-: results from [8R8 ;

can be produced. Otherwise, it doubles : 0 and iterates the process
until : 0 reaches to a pre-de�ned threshold (line 2).

In contrast to the vector fusion approach, the iterative merging
approach makes no assumption on the data and similarity func-
tions, thus it can be used in a wide spectrum of scenarios. But the
performance will be worse than vector fusion when the similarity
function is decomposable.

Note that in the database �eld, there are many top-: algorithms
proposed, e.g., [5, 12, 31, 42, 62]. However, those algorithms can-
not be directly used to solve the multi-vector query processing,
because the underlying vector indexes cannot support getNext()
e�ciently as mentioned earlier. The proposed iterative merging
approach (Algorithm 2) is a generic framework so that it is possible
to incorporate other top-: algorithms (e.g., [42]) by replacing line 5.
But it remains an open question in terms of optimality and it is also
interesting to optimize multi-vector query processing in the future.

5 SYSTEM IMPLEMENTATION
In this section, we present the implementation details of asynchro-
nous processing, snapshot isolation, and distributed computing.

5.1 Asynchronous Processing
Milvus is designed to minimize the foreground processing via asyn-
chronous processing to improve throughput. When Milvus receives
heavy write requests, it �rst materializes the operations (similar to
database logs) to disk and then acknowledges to users. There is a
background thread that consumes the operations. As a result, users
may not immediately see the inserted data. To prevent this, Milvus
provides an API flush() that blocks all the incoming requests until
the system �nishes processing all the pending operations. Besides
that, Milvus builds indexes asynchronously.

5.2 Snapshot Isolation
Milvus provides snapshot isolation to make sure reads and writes
see a consistent view since Milvus supports dynamic data manage-
ment. Every query only works on the snapshot when the query
starts. Subsequent updates to the system will create new snapshots
and do not interfere with the on-going queries.

Milvus manages dynamic data following the LSM-style. All the
new data are inserted to memory �rst and then �ushed to disk as
immutable segments. Each segment has multiple versions and a new
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version is generated whenever the data or index in that segment
is changed (e.g., upon �ushing, merging, or building index). All
the latest segments at any time form a snapshot. Each segment
can be referenced by one or more snapshots. When the system
starts, there are no segments. Assuming that there are some inserts
�ushed to disk at C1, which forms segment 1. Later on at C2, segment
2 is generated. Now there are two snapshots in the system where
snapshot 1 points to segment 1 and snapshot 2 points to both
segment 1 and segment 2. So the segment 1 is referenced by two
snapshots. All the queries before C2 work on snapshot 1 and all the
queries after C2 work on snapshot 2. There is a background thread
to garbage collect the obsolete segments if they are not referenced.

Note that the snapshot isolation is applied to the internal data
reorganizations in the LSM structure. In this way, all the (internal)
reads are not blocked by writes.

5.3 Distributed System
For scalability and availability, Milvus is a distributed system that
supports data management across multiple nodes. From the high
level, Milvus is a shared-storage distributed system that separates
computing from storage to achieve the best elasticity. The shared-
storage architecture is widely used in modern cloud systems such
as Snow�ake [16] and Aurora [63].

Figure 5 shows the overall architecture consisting of three layers.
The storage layer is based onAmazon S3 (also used in Snow�ake [16])
because S3 is highly available. The computing layer processes user
requests such as data insertions and queries. It also has local mem-
ory and SSDs for caching data to minimize frequent accesses to S3.
Besides that, there is a coordinator layer to maintain the metadata
of the system such as sharding and load balancing information. The
coordinator layer is highly available with three instances managed
by Zookeeper.

Next, we elaborate more on the computing layer, which is state-
less to achieve elasticity. It includes a single writer instance and
multiple reader instances since Milvus is read-heavy and currently
a single writer is su�cient to meet the customer needs. The writer
instance handles data insertions, deletions, and updates. The reader
instances process user queries. Data is sharded among the reader
instances with consistent hashing. The sharding information is
stored in the coordinator layer. There are no cross-shard transac-
tions since there are no mixed reads and writes in the same request.
The design achieves near-linear scalability as shown in the exper-
iments (Figure 10). All the computing instances are managed by
Kubernetes (K8s). When an instance is crashed, K8s will automat-
ically restart a new instance to replace the old one. If the writer
instance crashes, Milvus relies on WAL (write-ahead logging) to
guarantee atomicity. Since the instances are stateless, crashing will

(a) input (b) output

(c) input (d) output

Figure 6: Milvus for image search

not a�ect data consistency. Besides that, K8s can also elastically
add more reader instances if existing ones are overloaded.

To minimize the network overhead between computing and
storage, Milvus employs two optimizations: (1) The computing
layer only sends logs (rather than the actual data) to the storage
layer, similar to Aurora [63]. As mentioned in Sec. 5.1, Milvus asyn-
chronously processes the logs with a background thread to improve
performance. In the current implementation, the background thread
comes from the writer instance since the writer’s load is not too
high. Otherwise, the log processing can be managed by a dedicated
instance. (2) Another optimization is that each computing instance
has a signi�cant amount of bu�er memory and SSDs to reduce
accesses to the shared storage.

6 APPLICATIONS
In this section, we present applications that are powered by Milvus.
We have built 10 applications on top of Milvus that includes image
search, video search, chemical structure analysis, COVID-19 dataset
search, personalized recommendation, biological multi-factor au-
thentication, intelligent question answering, image-text retrieval,
cross-modal pedestrian search, and recipe-food search. This section
presents two of them due to space limit and more can be found in
https://github.com/milvus-io/bootcamp/ tree/master/EN_solutions.

6.1 Image Search
Image search is a well known application of vector search where
each image is naturally converted to a vector using deep learning
models such as VGG [58] and ResNet [28].

Two tech companies, Qichacha8 and Beike Zhaofang,9 currently
use Milvus for large-scale image searches. Qichacha is a leading
Chinese website for storing and searching business information (of
over 100 million companies), e.g., the names of o�cers/shareholders
and credit information. Milvus supports Qichacha in �nding similar
trademarks for customers to check if their trademarks have been
registered. Beike Zhaofang is one of the biggest online real estate
transaction platform in China. Milvus supports Beike Zhaofang in
�nding similar houses and apartments (e.g., �oor plans). Figure 6
shows an example of searching business trademarks and houses in
Qichacha and Beike Zhaofang using Milvus.

8https://www.qcc.com/
9https://www.ke.com/
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Figure 7: Milvus for chemical structure analysis

6.2 Chemical Structure Analysis
Chemical structure analysis is an emerging application that depends
on vector search. Recent studies have demonstrated that a new
e�cient paradigm of understanding the structure of a chemical
substance is to encode it into a high-dimensional vector and use
vector similarity search (e.g., with Tanimoto distance [9]) to �nd
similar structures [9, 66].

Milvus is now adopted by Apptech,10 a major pharmaceutical
company developing new medicines and medical devices. Milvus
signi�cantly reduces the time of chemical structure analysis from
hours to less than a minute. Figure 7 shows an example of searching
similar chemical structures using Milvus.

7 EXPERIMENTS
7.1 Experimental Setup
Experimental platform.We conduct all the experiments on Al-
ibaba Cloud and use di�erent types of computing instances (up
to 12 nodes) for di�erent experiments to save monetary cost. By
default, we use the CPU instance of ecs.g6e.4xlarge (Xeon Platinum
8269 Cascade 2.5GHz, 16 vCPUs, 35.75MB L3 cache, AVX512, 64GB
memory, and NAS elastic storage). The GPU instance is ecs.gn6i-
c16g1.4xlarge (NVIDIA Tesla T4, 64KB private memory, 512KB local
memory, 16GB global memory, and PCIe 3.0 16x interface).

Datasets. To be reproducible, we use the following two public
datasets to evaluate Milvus: SIFT1B [34] and Deep1B [8]. SIFT1B
contains 1 billion 128-dimensional SIFT vectors (512GB) andDeep1B
contains 1 billion 96-dimensional image vectors (384GB) extracted
from a deep neural network. Both are standard datasets used in
many previous works on vector similarity search and approximate
nearest neighbor search [35, 41, 65, 68].

Competitors.We compare Milvus against two open-source sys-
tems: Jingdong Vearch (v3.2.0) [4, 39] and Microsoft SPTAG [14].
We also compare Milvus with three industrial-strength commercial
systems (with latest version as of July 2020) anonymized as System
A, B, and C for commercial reasons. Since Milvus is implemented
on top of Faiss [3, 35], we also present the performance comparison
by evaluating the algorithmic optimizations in Milvus ( Sec. 7.4).

Evaluation metrics.We use the recall to evaluate the accuracy
of the top-: results returned by a system where : is 50 by default.
Speci�cally, let ( be the ground-truth top-: result set and ( 0 be the
top-: results from a system, then the recall is de�ned as |( \ ( 0 |/|( |.
Besides that, we also measure the throughput of a system by issuing
10,000 random queries to the datasets.

7.2 Comparing with Prior Systems
In this experiment, we compare Milvus against prior systems in
terms of recall and throughput. We use the �rst 10 million vectors
10https://www.wuxiapptec.com/
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Figure 8: System evaluation on IVF indexes

from each dataset (referred to as SIFT10M and Deep10M) because
prior systems are slow in building indexes and executing queries
on billion-scale datasets. Note that we also evaluate Milvus on
the full billion-scale vectors in Sec. 7.3 to demonstrate the system
scalability. Except for the three commercial systems (A, B, and C)
that the minimum con�guration requires multiple nodes, we run all
other systems (including Milvus) in a single node. Speci�cally, we
run System A and C on two nodes (with 64GB memory per node);
System B on four nodes (with 128GB memory per node).

In this experiment, we use two indexes IVF_FLAT and HNSW
whenever possible since both are supported by most systems, al-
though Milvus supports more indexes.

Figure 8 shows the results on IVF indexes (i.e., quantization-
based indexes). Overall, Milvus (even CPU version) signi�cantly
outperforms existing systems by up to two orders of magnitude
while keeping the similar recall. In particular, Milvus is 6.4⇥ ⇠ 27.0⇥
faster than Vearch; 153.7⇥ faster than System B even if System B
runs on four nodes;11 4.7⇥ ⇠ 11.5⇥ faster than System C even
if System C runs on two nodes; 1.3⇥ ⇠ 2.1⇥ faster than SPTAG
(tree-based index). But SPTAG cannot achieve very high recall (e.g.,
0.99) as Milvus does and also SPTAG takes 14⇥ more memory than
Milvus (17.88GB vs. 1.27GB).12 The GPU version of Milvus is even
faster since data can �t in the GPU memory in this setting. We
omit the results of System B on Deep10M since it only supports
the Euclidean distance metric. We also omit the results of Vearch
on GPU because there are multiple bugs in building indexes that
their engineers were still �xing by the time of paper writing.13 We
defer the results of System A to Figure 9 since it only supports the
HNSW index.

The performance advantage of Milvus comes from a few factors
in addition to engineering optimizations. (1) Milvus introduces �ne-
grained parallelism that supports both inter-query and intra-query
parallelism to best leverage multi-core CPUs. (2) Milvus develops
cache-aware and SIMD-aware optimizations to reduce CPU cache
misses and leverage wide SIMD instructions. (3) Milvus optimizes
for the hybrid execution between GPU and CPU.

Figure 9 shows the results on the HNSW index of each system.
Milvus outperforms existing systems by a large margin. Speci�cally,
it is 15.1⇥ ⇠ 60.4⇥ faster than Vearch; 8.0⇥ ⇠ 17.1⇥ faster than

11Note that System B has a single data point in Figure 8 and relatively low performance
because it used brute-force search as it disabled the parameter tuning (e.g., =?A>14
and =;8BC ) when we tested in 08/2020. But we expect a better performance in System
B once the parameter tuning is enabled (to use index) in the future.
12Besides that, SPTAG does not support dynamic data management, GPU, attribute
�ltering, multi-vector query, and distributed systems that Milvus provides, see Table 1.
13We submitted a bug report in 09/2020: https://github.com/vearch/vearch/ issues/252.
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Figure 9: System evaluation on HNSW indexes
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Figure 10: Scalability

System A; 7.3⇥ ⇠ 73.9⇥ faster than System C. We omit System A
on Deep10M because System A does not support inner product. We
omit also System C on Deep10M because the index building fails to
complete after more than 100 hours.

7.3 Scalability
In this experiment, we evaluate the scalability of Milvus in terms of
data size and the number of servers. We use the IVF_FLAT indexing
on the SIFT1B dataset that includes 1 billion vectors.

Figure 10a shows the results on a single node of ecs.re6.26xlarge
(104 vCPUs and 1.5TB memory) that can �t the entire data in mem-
ory. As the data increases, the throughput gracefully drops pro-
portionally. Figure 10b shows the scalability of distributed Mil-
vus. The data is sharded among the nodes where each node is
of ecs.g6e.13xlarge (52 vCPUs and 192GB memory). As the num-
ber of nodes increases, the throughput increases linearly. Note
that we observe that Milvus achieves higher throughput on the
ecs.g6e.13xlarge instance than the ecs.re6.26xlarge instance due
to the higher competition on the shared CPU caches and memory
bandwidth among more cores.

7.4 Evaluation of Optimizations
Figure 11 shows the impact of cache-aware design on two CPUs
with di�erent L3 cache sizes: 12MB (Intel Core i7-8700 3.2GHz) and
35.75MB (Xeon Platinum 8269 Cascade 2.5GHz). We set the query
batch size as 1000 and vary the data size (i.e., the number of vectors)
from 1000 to 10 million. It shows that the cache-aware design can
achieve a performance improvement up to 2.7⇥ and 1.5⇥ when the
cache size is 12MB and 35.75MB, respectively.

Figure 12 shows the impact of SIMD-aware optimizations fol-
lowing the experimental setup in Figure 11. It compares the perfor-
mance of AVX2 and AVX512 on the Xeon CPU. Figure 12 demon-
strates that AVX512 is roughly 1.5⇥ faster than AVX2.

Figure 13 evaluates the e�ciency of the hybrid algorithm SQ8H
(Algorithm 1) in Milvus on SIFT1B where data cannot �t into GPU
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Figure 11: Evaluating the cache-aware design
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memory. We compare SQ8H with SQ8 on pure CPU and pure GPU.
It shows that GPU SQ8 is slower than CPU SQ8 due to the data
transfer. As the query batch size increases, the performance gap
between GPU and CPU becomes smaller since more computations
are pushed to the GPU. In all cases, SQ8H is faster than running
SQ8 on pure CPU and pure GPU. That is because SQ8H only stores
the centroids in GPU memory to execute the �rst step and allows
the CPU to execute the second step so that there is no any data
segment transferred to GPU memory on the �y.

7.5 Evaluating Attribute Filtering
We de�ne the query selectivity as the percentage of entities that
fails the attribute constraint C� following [65]. Thus, a higher
selectivity means that a smaller number of entities can pass C� .
Regarding the dataset, we extract the �rst 100 million vectors from
SIFT1B and augment each vector with an attribute of a random
value ranging from 0 to 10000. We follow [65] to generate two
scenarios of di�erent : (50 and 500) and recall (0.95 and 0.85).

Figure 14 shows the results with varying query selectivity. For
the strategy A, its performance increases as the selectivity increases
because the number of examined vectors decreases. The strategy
B is insensitive to the selectivity since the bottleneck is vector
similarity search. The strategy C is slower than the strategy B since
it requires to check \ times of the vectors where \ is 1.1 in this
experiment. The strategy D outperforms A, B, and C since it uses a
cost-based approach to choose the best between the three. Our new
approach, i.e., the strategy E, signi�cantly outperforms the strategy
D by up to 13.7⇥ due to the partitioning.

Figure 15 compares Milvus against System A, B, C, and Vearch
in terms of attribute �ltering. It shows that Milvus outperforms
those systems by 48.5⇥ to 41299.5⇥. Note that we omit the results
of System B in Figure 15b because its parameters are �xed by the
system that users are not allowed to change.

7.6 Evaluating Multi-vector Query Processing
In this experiment, we evaluate the algorithms for multi-vector
query processing. Since SIFT1B and Deep1B only contain one vector
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Figure 14: Attribute �ltering in Milvus
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Figure 15: Attribute �ltering comparison

per entity, we then use another dataset called Recipe1M [50, 56] that
includes more than one million cooking recipes and food images.
Thus, each entity is described by two vectors: text vector (i.e., recipe
description) and image vector (i.e., food image). We randomly pick
up 10000 queries from the dataset and set : as 50 in this experiment.
We use the IVF_FLAT indexing in this experiment. Besides that, we
use weighted sum as the aggregation function.

Figure 16a shows the results where the similarity metric is Eu-
clidean distance. We compare the standard NRA algorithm of di�er-
ent : (50 and 2048) and our iterative merging (“IMG” for short) of
di�erent : 0 (4096, 8192, and 16384). It shows that the standard NRA
approach is either slow or produces low recall. In particular, the
NRA-50 approach is fast but the recall is only 0.1. The NRA-2048
increases the recall a bit (up to 0.5), but the performance is low
while our iterative merging algorithm (with : 0 being 4096) is 15⇥
faster than NRA-2048 with a similar recall. That is because IMG
does not need to invoke the vector query processing every time
and also it has lower maintenance cost of heaps.

Figure 16b shows the results on the inner product metric. We
compare the iterative merging (IMG-4096 and IMG-8192) with vec-
tor fusion. It shows that vector fusion is 3.4⇥ ⇠ 5.8⇥ faster since it
only needs to issue a single top-: vector similarity search.

8 RELATEDWORK
Vector similarity search (a.k.a high-dimensional nearest neigh-
bor search) is an extensively studied topic both for approximate
search (e.g., [7, 41]) and exact search (e.g., [38, 42]). This work
focuses on approximate search in order to achieve high perfor-
mance. Prior works on approximate search can be roughly classi-
�ed in four categories: LSH-based [23, 23, 24, 32, 40, 44, 45, 48, 73],
tree-based [17, 46, 54, 57], graph-based [20, 43, 49, 61, 72], and
quantization-based [3, 6, 22, 27, 33, 35]. However, those works are
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Figure 16: Multi-vector processing in Milvus

all about indexes while Milvus is a full-�edged vector data manage-
ment system including indexes, query engine, GPU engine, storage
engine, and distributed system. Moreover, Milvus’s extensible in-
dex framework can easily incorporate those indexes as well as any
new index if necessary. There are also open-source libraries for
vector similarity search, e.g., Faiss [35] and SPTAG [14]. But they
are libraries not systems. We summarize the di�erences in Table 1.

Recent industrial-strength vector datamanagement systems such
as Alibaba PASE [68] and Alibaba AnalyticDB-V [65] are not par-
ticularly optimized for vectors. Their approach is to extend the
relational database to support vectors. As a result, the performance
su�ers severely as demonstrated in experiments. Specialized vector
systems like Vearch [39] are not suitable for billion-scale data and
Vearch is signi�cantly slower than Milvus.

There are also GPU-based vector search engines, e.g., [35, 72].
Of which, [72] optimizes HNSW for GPU but it assumes data to be
small enough to �t into GPU memory. Faiss [35] also supports GPU,
but it loads the whole data segments on demand if data cannot �t
into GPU memory, leading to low performance. Instead, Milvus
develops a new hybrid index (SQ8H) that combines the best of
the GPU and CPU without loading data on the �y for fast query
processing.

This work is relevant to the trend of building specialized data
engines since one size does not �t all [60], e.g., specialized graph
engine [18], IoT engine [21], time series database [55], and scienti�c
database [59]. In this regard, Milvus is a specialized data engine for
managing vector data.

9 CONCLUSION
In this work, we share our experience in building Milvus over the
last few years at Zilliz. Milvus has been adopted by hundreds of
companies and is currently an incubation-stage project at the LF AI
& Data Foundation. Looking forward, we plan to leverage FPGA to
accelerate Milvus. We have implemented the IVF_PQ indexing on
FPGA and the initial results are encouraging. Another interesting
yet challenging direction is to architect Milvus as a cloud-native
data management system and we are currently working on it.
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